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Synopsis 

The adhesion between matrix and inclusions (fibers or particulates) in a composite material 
is one of principal factors characterizing the mechanical and physical behavior of the modern 
composite materials. All theoretical models describing these substances neglect to consider 
the influence of the boundary layer developed between phases during the preparation of the 
composite. In this paper, two versions of a theoretical model were introduced for the evaluation 
of this mesophase layer. It had been shown that this thin layer influences considerably the 
physical properties of the composite. It was assumed that the physical properties of the me- 
sophase unfold from those of the hard-core fibers to those of the softer matrix. Thus, a mul- 
ticylinder model was assumed, improving the classical two-cylinder model introduced by 
Hashin and Rosen for the representative volume element of the composite. Based on ther- 
modynamic phenomena appearing at the glass transition temperatures of the composite and 
concerning the positions and the sizes of the heat-capacity jumps there, as well as on the 
experimental values of the longitudinal elastic modulus of the composite, the extent of the 
mesophase and the mechanical properties of the composite may be accurately evaluated. These 
versions of model are based on a previous one concerning a multilayer model, but they are 
considerably improved, in order to take into consideration, in a realistic manner, the physical 
phenomena developed in fiber-reinforced composites. 

INTRODUCTION 

In all theoretical models introduced in the literature for explaining the 
mechanical behavior of composites, the surfaces of phases are considered 
as perfect mathematical surfaces, whereas in reality they constitute rough 
surfaces with corners, cavities, protrusions, and other irregularities, cre- 
ating thin anomalous layers, instead of perfect surfaces. Although these 
irregularities are generally infinitesimal, they are capable to create ma- 
terial and stress concentrations, dispersed irregularly on the interfaces. 
Moreover, the geometry of inclusions, especially in the fiber-reinforced com- 
posites causes the development of corners, reentrant notches, microcracks, 
and microprotrusions, which have the deleterious effect of developing stress 
singularities in their neighborhood. All these anomalies are not predicted 
by any mathematical model introduced in the literature.' 

The polymeric matrix, cast on the surfaces of such inclusions, created 
phenomena of physical and chemical adsorption. Physisorbed layers of the 
matrix contribute, in general, to weak mesophases. However, the physical 
interpenetration of the boundary layer of the matrix in cavities and other 
rough regions of the surfaces of solid inclusions, interrelated with the biased 
development of the molecular structure of the polymeric chains there, and 
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any other structural variations of the adjacent layers, create an  intermixing 
and interpenetrating phenomenon, which influences considerably the mo- 
lecular structure of the mesophase, thus resulting in variations of its me- 
chanical strength. Thus, the mechanical properties of the matrix films and 
layers close to the interfaces, which are functions of the initial structure 
of the matrix, are strongly depending on the physical situation of this 
boundary layer. 

On the other hand, chemisorbed (chemically adsorbed) molecules on the 
interfaces create structural variations, by developing beaded structures of 
caged molecules or ladderlike molecules. All these types of chemisorbed 
elements on inclusions lead to rapid variations of the properties and me- 
chanical strength of the interface layer, close to the surfaces of inclusions. 

Chemical bonding at the interface is generally considered to be a major 
reinforcement mechanism of coupling aging functioning. Chemical reactiv- 
ities of these boundary layers determine, to a considerable extent, the con- 
figurations of the mesophase, by implying conformations to the molecules, 
much different than those of the bulk and variable from place to place. 
Random, block, and graft copolymers may be yielded by these reactivities, 
depending on the local combinations of the materials there and their con- 
ditions of reaction. 

Then, around each inclusion (fiber or particulate) a complex state is de- 
veloped, which consists of an  intermediate boundary layer of variable thick- 
ness along the inclusions, where all these anomalies are concentrated and 
influence the physical behavior of this layer. This zone is extended beyond 
the thin layer including the phenomena of physisorption and chemisorption, 
and it incorporates the zones of imperfect bonding and shrinkage stresses, 
the high stress gradients, or even stress singularities, due to geometric 
discontinuities of the surfaces of inclusions, to the concentration of voids 
and to the impurities, microcracks, and other anomalies.= 

It has been proved that the thickness of this boundary layer is intimately 
correlated with the cohesion energy of the matrix polymer, the free surface 
energy of the solid inclusions, and the flexibility of the polymeric structure 
of the m a t r i ~ . ~  

In this paper the existence of the boundary layer, constituting the me- 
sophase and developed between the two main phases of a two-phase com- 
posite, was taken into account for the development of a convenient model 
describing the thermomechanical behavior of particulates and fiber com- 
posites. This layer was assumed as developed entirely on the side of the 
softer polymeric matrix, and the harder inclusion is considered as neutral. 
In the models the mesophase was assumed as an  independent pseudophase 
of variable properties, matching those of the inclusion on the one side and 
the matrix on the other. The models are based on the same basic ideas as 
the Hashin-Rosen model.7 The evaluation of the characteristic properties 
of the mesophase was achieved by introducing two variations of a n  improved 
law of mixtures between phases and measuring the glass transition tem- 
peratures and specific-heat jumps of the matrix and the composite. These 
unfolding models proved to be adaptable to the real situation in the com- 
posite, yielding satisfactory values for the mechanical properties of com- 
posites. 
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MODELS FOR COMPOSITES 

The models introduced by Hashins for the particulates and by Hashin 
and Rosen7 for the fiber composites are of general acceptance. They assume 
in both cases representative volume elements (RVE) of the materials con- 
sisting of a gradation of sizes of cells, corresponding to the volume filling 
configuration existing in the particular material studied. Moreover, a fixed 
ratio of radii between the spheres or the cylinders of the inclusions Crf) and 
the respective quantities for the matrix (rm) are assumed, in order to have 
the analysis of a single representative volume element (RVE), representing 
the behavior of the entire composite. 

Besides these simple geometric models, other types of models include the 
so-called selfconsistent model, according to which the average values for 
stresses and strains in either phase are determined by solving two separate 
problems, whose superposition yields the final configuration of the model. 
The solution of the two individual problems allows the evaluation of the 
average properties of the composite, by knowing the respective properties 
of either phase. The self-consistent model was applied to composites by 
Budianskyg and separately by Hill.lo 

An important variation of the self-consistent model is the three-phase 
model introduced by Kerner.l' In this model the inclusion is enveloped by 
a matrix layer, which in turn is embedded in an infinite medium with the 
unknown macroscopic properties of the composite. 

However, following Nielsen,12 we may state that there is practically no 
good theory for the evaluation of the moduli in particulates except the cases 
where the fillers are soft rubbers. This explains also the great number of 
models introduced in the literature, which is increasing continuously. 

From all these models those introduced by Kerner" and Van der Poel13 
give satisfactory results and allow for their extension to multiphase models. 

The Kerner model considers the problem as an averge elasticproblem and 
finds the conditions between moduli and volume contents between phases 
in a generic spherical grain of the body without giving explicitly the states 
of stresses and strains in the composite, a fact which is extremely difficult 
to be explicitly defined. On the other hand, Van der Poel encounters the 
same problem by applying the solution introduced by Goodier14 and Frohlich 
and Sack15 for a spherical cavity submitted either to a hydrostatic loading 
or to a pure shear loading to the case of the RVE of a typical particulate. 

While the initial van der Poel model was valid for hard fillers and in- 
compressible matrices, this model has been extended by Schwarzl and 
EikhofP6 to incorporate the description of particulates along a wide tem- 
perature range. A further use of the van der Poel model and the Schwarzl 
and Eikhoff ideas were made by Maurer in his interesting di~sertati0n.l~ 

Similar attempts to study three-phase particulate composites were made 
by Sagalaev and Simonov-Emiljanov18 in the Kerner-Kerner model, where 
the classical Kerner model was used twice to cover successively by pairs 
the phases of a three-phase composite," by Kudykina and Pervak,lg by 
Takano and Sakanishi,17 and finally by Spathis, Sideridis, and Theocark20 
All these models yield the moduli of the particulate composites in terms of 
the moduli and respective volume fractions of three constituent phases of 
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the composite, without considering, except the last one, that  the middle 
phase is a product derived from the interaction of the two main phases and 
depends on their degree of adhesion. All these models have been compared 
previously in Ref. 21. 

Finally, the Takayanagi modelzz should be mentioned, where the influ- 
ence of the filler modulus Ef is taken into account for the evaluation of the 
respective modulus of the composite, E,. In this model the filler volume 
fraction, uf = A'p, was combined with a part (1 - 'p)Au, of the matrix volume 
fraction, urn, which had a different influence on E, than the rest of the 
matrix volume fraction (1 - Ah,. 

A convenient combination of these three elements, that  is, the filler vol- 
ume fraction uf = A'p (represented as a n  orthogonal of sides A and 'p, quan- 
tities which represent the state of mixing), the part of the matrix connected 
to uf, (1 - 'p)Au,, and the rest of the matrix, (1 - Alum, were arranged in 
a convenient combination, either the uf and (1 - 'p)Au, in parallel and then 
the (1 - A)u, element in series (model A) or the uf and (1 - 'p)Au, in series 
and the (1 - Ah, in parallel with the previous unit (model B) gave satis- 
factory approximations either for the composite compliance 0, of a partic- 
ulate (model A) or for the composite modulus E, of a fiber composite (model 
B). 

While the Takayanagi model was designed mainly for two-phase mate- 
rials, it could be extended to incorporate the influence of m e s o p h a ~ e . ~ ~  It 
seems that a further extension of the concept of using mixed-mode con- 
nections, that  is, in series and in parallel, for the elements contained in 
the model representing the mechanical properties of the particulate, is very 
promising, since it yields high flexibility in the model, so that it can be 
adapted to the real behavior of the substance. A first attempt towards this 
direction was made by Kraus and R ~ l l m a n n , ~ *  who have introduced a mod- 
ification in Takayanagi's model suitable for describing the idea of inter- 
penetrating networks in polyblends. 

A better approach for the Rosen-Hashin models is to adopt models, whose 
representative volume element consists of three phases, which are either 
concentric spheres for the particulates, or coaxial cylinders for the fiber 
composites, with each phase maintaining its constant volume f r a ~ t i o n . ~  

The novel element in these models is the introduction of a third phase 
in the Hashin-Rosen model, which lies between the two main phases (in- 
clusions and matrix) and contributes to the progressive unfolding of the 
properties of the inclusions to those of the matrix, without discontinuities. 
Then, these models incorporate all transition properties of a thin boundary 
layer of the matrix near the inclusions. Thus, this pseudophase character- 
izes the effectiveness of the bonding between phases and defines an  adhesion 
factor of the composite. 

These models are improvements of a similar model,' where the third phase 
was assumed with constant mechanical properties lying in between the two 
main phases and defined by considering the limiting values of the ther- 
momechanical properties of the composite in terms of the properties of its 
constituents. Figure 1 presents principal sections of the models by Hashin 
and Rosen and the respective improvements by our models both for par- 
ticulates and fiber-reinforced composites. In the Hashin-Rosen models the 
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equatorial . section 

rneridional -- section 

Fig. 1. Configurations of the representative volume elements for (a) particulates and (b) 
fiber-reinforced composites. 

matrix phases (MI are concentric spheres or cylinders and the respective 
mesophases (I) disappear. 

These models for particulates and fiber-reinforced composites have been 
introduced previously, and they have been described in Refs. 21 and 25. 
However, a brief description of both models is worthwhile here. 

For the particulate composites the component phases are interconnected 
through consecutive spherical interfaces of the filler, mesophase, and ma- 
trix. The dominant transverse interconnection through shear, holding for 
the fiber composites, is in this case insignificant; the adhesion is now 
achieved by a continuously varying combination of shear and normal forces 
at the interfaces. Thus, variable components of the hydrostatic and shearing 
loading was developed between these surfaces. Then, it is closer to the real 
situation of force distribution to assume that the contributions of phases 
are done by superposed in series layers of the phases, lying the one on the 
top of the other in the direction of the application of the external load. 

In this case, the compliances, instead of the moduli, should be added to 
derive the compliance of the composite, since now the capacitances of the 
respective electrical analogy, corresponding to the moduli of the elements, 
are connected in series. This argumentation explains the necessity of adding 
in this case the compliances of phases, instead of moduli. 

However, since the approximation of superposed flat layers is again far 
away from reality, because of the average sphericity of the layers, the 
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expressions for the bulk compliance of the composite should be expected to 
be given by complicated expressions of the constituent compliances. 

For the case of a unidirectional fiber composite a simple improved law 
of mixtures, where the contribution of the mesophase is taken into account, 
may be considered as satisfactory. This law is expressed by 

where the subscripts c,fji, and m denote the composite, the filler, the me- 
sophase, and the matrix, respectively, and the u’s are expressing their re- 
spective volume fractions. 

Relation (1) may be considered as satisfactory for fiber-reinforced com- 
posites because the individual moduli of phases in the RVE should cooperate 
through their interfaces, which are assumed parallel to the direction of 
application of the external load, this cooperation being achieved by the 
lateral surfaces of cylinders developing shears between phases. Thus, this 
model necessitates an addition of the moduli of the phases multiplied by 
weight factors, which are simply their respective volume contents. In an 
electrical analogy scheme, then, the weighted moduli constitute capaci- 
tances connected in parallel, which explains the validity of relation (1). This 
relationship was found to yield satisfactory results in the applications. l 4  

In order to determine the E, modulus of a particulate, we consider that 
the representative volume element consists of three concentric spheres, 
having radii rf, r,, and r,, respectively. The external radius of the RVE was 
taken such that this model corresponds to the average properties of the 
respective particulate. All quantities are normalized to the volume of the 

outer sphere -m% to be equal to unity. 

We assume further that all phases are elastic, homogeneous, and isotropic, 
with the exception of the mesophase layer, which has a variable modulus, 
changing with the polar distance between the values of Ef and Em at its 
boundaries. However, this layer is also averaged, so that El corresponds to 
its E; mean value. Besides, it is assumed that the fillers are perfect spheres, 
their distribution is uniform, and their intercenter distance large enough 
to ascertain a negligible interaction between neighboring fillers. Finally, 
we assumed that the RVE is submitted to a radial pressure of magnitude 
pm, so that, at  the other boundaries, equal radial pressures of magnitudes 
p ,  and p f  are exerted, which exhibit the interaction between successive 
phases. 

Because of the spherical symmetry of the problem we introduce spherical 
(r,O,v) coordinates with the simplification that, from all the components of 
the spherical displacement vector, the u,-radial displacements are different 
than zero, because of the nature of geometry and loading of the problem. 

The solution of the problem may be derived by the stress functions @, = 
f ( r )  (withj = fji,m for the filler, mesophase, and matrix, respectively), which 
are expressed by 

4 
3 
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with the constants A j  and B, defined by the boundary conditions between 
phases, and A, = 0 for finiteness of stresses at r = 0. 

The components of displacements are given by 

u rJ . = ( -Ajr -2  + 2Bjr)/2Gj 

with the other components 

U e j  = u,j = 0 

The component ud is expressed by 

since A, = 0. 
The components of stresses are given by 

2Aj 2(1 + vj)  2(1 + V j )  
urj = 7 + ( 1  - 2wj) B, uOj = uqj = - A i r 3  + ( 1  - 2Wj) 4 

The boundary conditions yield: 

(i) At r = r,, 

(ii) At r = r ,  

(iii) At r = r,, 

up, = urI = -p, 

uri = (T, = -pl 

urm = -pm 

The solution of the system derivedfrom the boundary conditions (6) yields 
the values of the constants Aj  and B; 

where the index j + 1 means the next layer of the layer j considered, with 
a succession from the filler outwards, so that j = 1 corresponds to the filler, 
j = 2 to the mesophase, and j = 3 to the matrix of the particulate, and ro 

The respective relations for the radial displacements and the components 
of strains follow readily from the above relations, and they are given in 
detail in Ref. 21. 

The boundary conditions, which imply continuity of displacements be- 
tween phases and normal tractions at the interfaces, yield some further 
relations, sufficient for the solution of the respective elasticity problem, 
provided that a relationship between the elastic modulus E, of the composite 
and the stresses and strains of the constituent phases is established by using 
the theorem of elastic strainenergy balance on the representative volume 
element. 

- - rj-l = 0 for j = 1, rj = r,,,,rbrffor j = 1,2,3, respectively. 
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The balance of strain energies in the RVE yields 

where 

and 

Pf A, Pf 
Pi Pi Pm Aim 

Pm 
im , and - = - A f i -  --, A. = -  

r3 r38 - -  

and 

(10) 

Equation (8) yields the bulk modulus K, of the composite in terms of the 
bulk and shear moduli of the phases and the stress ratios A, and Aim which, 
on the other hand, depend on the elastic moduli and Poisson’s ratios of the 
phases. These stress ratios are expressed by21 

and: 

For the complete solution of the problem, a relation between the Poisson 
ratios of the composite and its constituent phases is needed. Since the 
mesophase is derived from the matrix material, it is reasonable to accept 
that 

u, cx v, (14) 

whereas for the Poisson ratio u, of the composite we use a modification of 
relationship given by Ref. 26, interconnecting the values of Poisson’s ratios. 
This relationship was found satisfactory for our purposes and is given by 
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The last equation completes the number of relationships, necessary for 
evaluating the characteristic properties of the particulate. 

The model expressed by relations (8) and (15) yields accurate results if 
the constituent phases of the particulate composite are accurately defined. 
However, it should be mentioned that its validity holds only in the purely 
elastic behavior of the composite, since viscoelastic effects have not been 
encountered in this model. To this aspect the model is similar to all other 
models and especially the most sophisticated Kerner-Kerner, Krauss, Tak- 
ayanagi, van der Poel, and Maurer models. Furthermore, it contains an 
additional advantage that it, alone, incorporates the influence of the me- 
sophase developed between phases, which depends on the adhesion quality 
of their bonding, and in some regions it plays an important and regulating 
role to the mechanical behavior of the composite. 

Indeed, in all previous models the boundaries of their phases were vi- 
zualized as smooth surfaces. In reality, around an inclusion a complex state 
develops, which consists of areas of imperfect bonding, permanent stresses, 
due to shrinkage of the polymer phases, during the curing and after-curing 
periods, and the change of the thermal conditions there, high stress gra- 
dients and stress singularities, due to the complicated geometry of the 
interfaces, voids, impurities, and microcracks, appearing at the vicinity of 
these boundaries. 

Moreover, the interaction of the matrix polymer, during its after-curing 
period, with the surface of the solid inclusion is always a complicated pro- 
cedure. Indeed, the presence of the filler restricts the free segmental and 
molecular mobility of the polymeric matrix, as adsorption interaction be- 
tween phases occurs. This phenomenon influences considerably the quality 
of adhesion between phases, contributing to the development of a hybrid 
phase between main phases, which is called interphase, or, better, meso- 
phase. 

The existence of mesophase was proved experimentally and its extent 
was evaluated by a theory developed by L i p a t ~ v . ~ ~  Similar evaluations of 
the extent of mesophase were executed by calculating, through dynamic 
measurements of the storage moduli and the loss factors at the vicinity of 
Tis  of the matrix and the composites the differences of these quantities 
for the composite and the matrix materials.28 Finally, the mesophase volume 
fraction u, may be evaluated by executing measurements of the strain mag- 
nification factor for the unfilled and filled polymer, as has been nicely 
advanced by Ziegel and c o - w ~ r k e r s , ~ ~ ~ ~ ~  on a theory based on the concept of 
line fraction introduced by B ~ e c h e . ~ ~  

Although the extent of mesophase may be determined from thermody- 
namic measurements, the influence of this pseudophase to the mechanical 
behavior of the composite was not extensively studied. 

For the case of fiber-reinforced and particulate composites a multilayer 
model was introduced in Ref. 1, in which the influence of the mesophase 
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on the properties of the composite was studied. Another model was after- 
wards presented, where the variable with polar distance elastic modulus 
of the mesophase was expressed as sum of a constant term and two variable 
terms, expressed as modifications of the moduli of the filler and the matrix 
by negative power l a ~ s . ~ , ~ ~  The two-term improvement of the previous mod- 
el,Z5 where the variable mesophase modulus was expressed by a negative 
power term of variation of the Efmodulus and a linear term for the variation 
of the Em modulus, gave better and much more stable results.33 

THE UNFOLDING MODELS FOR THE MESOPHASE 

A decisive factor for the physical behavior of a composite is the adhesion 
efficiency at the boundaries between phases. In all theoretical models this 
adhesion is considered as perfect, assuming that the interfaces ensure con- 
tinuity of stresses and displacements between phases, which should be dif- 
ferent because of the proper nature of the constituents of composites. 
However, such conditions are hardly fulfilled in reality, leading to imperfect 
bonding between phases and variable adhesion between them. The intro- 
duction of the mesophase layer has a function to reconcile, in a smooth 
way, the differences on both sides of interfaces. 

Thus, in the three-layer model, with the intermediate layer having var- 
iable physical properties (and perhaps also chemical), subscripts f ;  i, m, and 
c denote quantities corresponding to the filler, mesophase, matrix, and 
composite respectively. 

The model for the representative volume element of a particulate consists 
of a unit of three concentric spheres with respective radii rf, r,, and r,,,, 
whose volume contents are expressed by 

w f =  (3, I), = (y), and urn = ~ r% 7 
Assuming the appropriate boundary conditions between the internal 

sphere and any number of layers surrounding it, in the RVE of the com- 
posite, which assure continuity of radial stresses and displacements, we 
may establish, by an energy balance between phases, a relationship, inter- 
connecting the compliances, or the moduli between phases and composite. 
Such a relationship is given by eq. (8). In this relation the quantity B, 
corresponds to the average value of the modulus of the mesophase and, in 
the following, it will be denoted as E:. However, this effective or average 
value of the mesophase modulus, necessary for introducing the contribution 
of the mesophase to the value of the modulus of the composite, does not 
really exist, except in a very thin spherical layer. 

It is easy to establish the respective model for the representative volume 
element of a unidirectional fiber reinforced composite, consisting of a cluster 
of three coaxial cylinders of the same height equal to unity, for which the 
following relations hold: 

w f =  (3, w i =  (-), r: - r3 and urn = (+) r: - (17) 
r?i 
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Assuming the appropriate boundary conditions between the internal cyl- 
inder and any number of annuli surrounding it in the RVE of the composite, 
which assure continuity of radial stresses and displacements, according to 
the loading case considered, we may establish readily, by an energy balance 
between phases, the well-known law of mixtures, valid for the longitudinal 
modulus E,, E, of the composite: 

This relation may be extended to any described number n of coaxial cyl- 
inders. 

If we assume further that the mesophase annulus consists of a material 
having progressively variable mechanical properties, in order to match the 
respective properties of the two main phases bounding the mesophase, we 
can define a variable elastic modulus for the mesophase, Ei(r), which, for 
reasons of symmetry, depends only on the polar distance from the fiber- 
mesophase surface. In other words, we assume that the mesophase layer 
consists of a series of elementary layers, whose constant mechanical prop- 
erties differ with each other by a quantity (small enough) defined by the 
law of variation of EL(r). 

THE THREETERM VERSION OF THE UNFOLDING MODEL OF 
THE MESOPHASE 

In order to make compatible the variation of the Ei(r) modulus with its 
neighbor phases, this modulus should be expressed by three terms, i.e., (i) 
a constant one and equal to the Em modulus, (ii) a variable one, depending 
on the modulus of the inclusion (Ef), which should be added in the first one, 
and (iii) a third variable one, which should depend on the Em modulus of 
the matrix and which should be antagonistic to the second term. 

The two variable terms should yield very abrupt variations in the Ei(r) 
modulus, since the generally large differences between the moduli of the 
inclusions and the matrix must be accommodated in very thin layers of the 
mesophases. The appropriate functions for such steep variations are power 
functions of r with large negative exponents. Then, the E,(r) modulus may 
be expressed by 

E j ( r )  = Em + E 4;r - - Em- (;r (19) 

Expression (19) may be interpreted by the fact that the variable Ei ( r )  
modulus, which connects two phases with highly different mechanical prop- 
erties and elastic moduli, must interconnect and span these differences. 
Indeed, for hard-core composites it is valid that Ef > > Em, whereas for 
rubber reinforcements we have the opposite relation Em > > EF However, 
never happens that E,= Em. 
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If we assume that the longitudinal displacements along each of the three 
phases (filler-mesophase-matrix) are, on the average, equal and if we ne- 
glect transversal effects we can reason that, since longitudinal displace- 
ments and strains are equal, the stresses developed in these phases should 
be proportional to their respective moduli. It has been established that, for 
singular regions in elastic stress fields, singular distributions may be ap- 
proximated by negative powers of the radial distances from the singular 
points. Then, it is reasonable to accept in this case also as appropriate 
functions, expressing the transfer of moduli from fillers to matrix, forms 
described by the terms of relation (19). 

The second right-hand term in eq. (19) expresses the contribution of the 
Ef modulus to the variation of EL ( r )  modulus, whereas the third right-hand 
term defines the counterbalancing contribution of the Em modulus, to cor- 
rect the contribution of the Ef modulus, and insert the influence of the 
matrix to the outer layers of the mesophase layer. 

From the compatibility conditions for the moduli at the filler-mesophase 
and mesophase-matrix boundaries, it may be derived that: 

(i) For r = rf we have 

which indicates the automatic satisfaction of the boundary condition for 
this interface. 

(ii) For r = ri we have 

EL(rj) = Em + Ef - - Em = Em (;r tr 
Relation (21) yields that 

or 

Putting 

we have 

71-72 

E m  

(21) 

(22) 
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where A is a real constant, depending on the ratio of the moduli of the two 
phases and the ratio of the radii of the filler and the mesophase. 
As soon as the radius of the extent of mesophase is defined, the constant 

A is immediately defined and fixes the constant difference between the 
exponents q1 and yZ. 

Higher values of A indicate better adhesion for a particular composite, 
because they imply small differences in the values of ri and rp For hard- 
core materials, where Ef > > Em, the radius r, must be always larger than 
rf, and E, > > Em; therefore, the logarithm of the ratio ri/rf is a positive 
number, and, since log(Ef/Em) > 0, the values of A are always positive. This 
means for a hard-core composite it is always valid that r), > q2. On the 
contrary, for rubber-core composites log(EJE,) is also negative, and there- 
fore it is valid that q1 < qz. 

THE TWO-TERM VERSION OF THE UNFOLDING MODEL 

Since the third term of the right-hand side of Eq. (19) takes care or the 
influence of the matrix modulus Em to the variation of Ei(r) modulus and 
since for strong-core composites this contribution is always secondary, re- 
lation (19) may be somehow relaxed by assuming that this third term varies 
linearly with the radius r along the mesophase. This means, in other words, 
that the exponent qz may be assumed equal to unity, without losing gen- 
erality, and requiring the first right-hand side term to take care of the 
totality of the change of slope of the Ei ( r )  modulus. 

Then, relation (19) may be written as follows: 

Now relation (26) contains only two terms in its right-hand side, since the 
contribution of the Em constant term in the eq. (19) is now incorporated 
into the second linear right-hand side term of eq. (26). 

It is easy to show that the boundary conditions for this equation are 
automatically satisfied. Indeed, for r = rf we have the second right-hand 
term of eq. (26) equal to zero and the first term equal to the Ef modulus, 
as it should be. 

Moreover, for r = r, eq. (26) yields automatically E, ( r )  = Em, and this 
satisfies the exterior boundary condition. 

In this way both boundaries of the mesophase layer with the filler and 
the matrix are automatically satisfied and, therefore, eq. (26) is a convenient 
relationship, yielding a variable E, ( r )  modulus, accommodating, in a natural 
way, the smooth transition from a large Ef modulus to a reduced Em modulus 
for the matrix and vice versa. 

Relation (26) has the advantage of containing only one unknown exponent 
and therefore simplifies considerably the evaluation of the unknown quan- 
tities in the definition of the variable E, ( r )  modulus. 

Moreover, it was established during the numerical evaluation of the un- 
known quantities in relations (19) and (26) that the definition of the two 
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exponents q, and q2 in relation (19) is rather unstable, depending fraily on 
small variations of the value of the B, modulus. On the contrary, the single 
unknown 217 exponent, defining relation (261, yields rather stable and re- 
liable results. 

Then, in this two-term unfolding model remains to define this exponent 
217, since all other quantities and especially the ri radius are either given 
or evaluated from the thermodynamic equilibrium relations. Then, in this 
model the 27) exponent is the characteristic parameter defining the quality 
of adhesion, and, therefore, it may be called the adhesion coefficient. This 
exponent depends solely on the ratios of the main-phase moduli (EjE,), as 
well as on the ratio of the radii of the filler and the mesophase. 

DEFINITION OF THE THICKNESS OF THE MESOPHASE 

It has been observed that, for the same volume fraction uf of the filler, 
an increase of Tg indicates an increase of the total surface of the filler.34 
This is because an increase in Tg may be interpreted as a further formation 
of molecular bonds and grafting between secondary chains of molecules of 
the matrix and the solid surface of inclusions, thus restricting significantly 
the mobility of neighbor chains. This increase leads to a change of the 
overall viscoelastic behavior of the composite, by increasing the volume 
fraction of the strong phase of inclusions. 

The variation of the properties of polymers along their interfaces with 
inclusions is extended to layers of a sometimes significant thickness. This 
follows from the fact that if only a thin surface layer of the polymer was 
affected by its contact with the other phase, then the change in T, should 
be insignificant, since the level of the glass transition temperature is as- 
sociated with the bulk of the polymer, or, at least, with a large portion of 
it. 

The same phenomena appear when the volume fraction of the strong 
inclusions is increased. In this case, if the adhesion of the main phases is 
satisfactory, an increase of ef means an automatic increase of the strong 
boundary layer (stronger than the matrix) forming the mesophases, and 
this results forcibly to an increase in T, A considerable amount of exper- 
imental work indicates an increase of Tg in composites with an increase of 
the filler content.27 The degree, however, of this variation and the character 
of its change may differ from composite to composite and, also, for the same 
composite, is depending on the method used for its m e a s ~ r e m e n t . ~ * ~ ~ ~ ~ ~  

Moreover, in many cases, a shift of Tg to lower values of temperature has 
been detected, but in these cases the quality of adhesion between phases 
may be the main reason for the reversing of this a t t i t ~ d e . ~ ~ . ~ ~  If calorimetric 
measurements are executed in the neighborhood of the glass transition zone, 
it is easy to show that jumps of energies appear in this neighborhood. These 
jumps are very sensitive to the amount of filler added to the matrix polymer, 
and they were used for the evaluation of the boundary layers developed 
around fillers. 

The experimental data show that the magnitude of the heat capacity (or 
similarly of the specific heat), under adiabatic conditions, decreases regu- 
larly with the increase of filler content. This phenomenon was explained 
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by the fact that the macromolecules pertaining to the mesophase layers 
are totally or partly excluded from participating in the cooperative process 
taking place in the glass-transition zone, due to their interactions with the 
surfaces of the solid inclusions. 

It was shown38*39 that, as the filler volume fraction is increased, the pro- 
portion of macromolecules participating in this boundary layers with re- 
duced mobilities is also increased, so that the number of macromolecules 
participating in the T, process is reduced. This is equivalent to a relative 
increase of u? 

Lipatovn has indicated that the following relation holds between a weight 
constant A, defining the mesophase volume fraction ui, and the jumps of 
the heat capacity A q  of the filled composite and AG of the unfilled polymer 
for particulate composites: 

where A is a real constant, which multiplies the filler volume fraction uf,  
in order to take into consideration the contribution of the mesophase volume 
fraction u, to the mechanical behavior of the composite. 

In order to define the volume fraction ui of the mesophase for the par- 
ticular composite studied, a series of dilatometric measurements were ex- 
ecuted in a differential scanning calorimeter, over a range of temperatures 
including the glass transition of the matrix and the composites containing 
different amounts of fillers. The variation of the heat capacity C, of the 
samples per mole vs. temperature was plotted automatically in a differential 
scanning calorimetry. All C, = f (T) curves plotted for pure polymers and 
composites presented a typical jump AC, in heat capacity at the glass tran- 
sition zone. Figure 2 presents schematically the variation of C, at this zone 
versus temperature. 

The AC,’s were calculated by ignoring the smooth protrusions BBC ap- 
pearing in the C, = f (T) curves (see Fig. 2) and measuring the distance of 
the intersection A of the tangents AA’ of the glassy curve and AB of the 
transition curve from the horizontal tangent CC‘ of the rubbery part of the 
curve AC, = f(T). 

In order now to define the radius r, of the layer corresponding to the 
mesophase, we express it as r, = (rf + Ar) and we introduce this value into 
the relation (16) holding for particulates, or into relation (17) valid for 
cylindrical inclusions. For unidirectional fiber-reinforced composites, which 
will be used in the applications of the method, use will be made of a mod- 
ification of Lipatov’s formula, valid for particulatesn This relation for fiber- 
reinforced composites takes the form: 

Relation (28) may be written as 
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-a -20 0 20 40 
Tg 

Temperature. ( OC ) + 
Fig. 2. Typical DSC traces for the specific-heat jumps at the glass-transition regions of E- 

glass fiber-epoxy resin composites and the mode of evaluation of AC,’s. 

which yields 

(29) 
1 - Uf B=I)’-f)f= - 

Uf+Ul 1 - urn 1 - Uf(1- A) 

The real constant B depends only on the filler volume fraction and the 
coefficient A, and it is critical for evaluating the exponents q1 and q2. In- 
troducing the values of A defined from relation (27), we can define the values 
of Ar for the various filler volume contents uffor a composite with various 
volume contents uf of E-glass fibers, having a radius rf = 6 pm. Then, it is 
easy to evaluate the volume fraction u, for the mesophase layer. It can be 
readily derived from Figure 3, where the ACp’s and Ar’s are plotted for 
various values of uf, that, as uf is increasing, the AC,’s are increasing slightly 
with uf and the mesophase volume fractions ui are progressively increasing. 
This behavior is in accordance with similar measurements of composites, 
although measurements of AC, in crosslinked polymers are still sparse. 

The graphs of all the data for the heat capacity, which were similar to 
the heat-capacity graphs for iron-epoxy particulates, shown in Ref. 37, 
presented shapes which were qualitatively similar to one another. They 
consisted of two linearly increasing regions, separated by the glass tran- 
sition zone. While the glassy linear regions presented a positive and sig- 
nificant slope, the rubbery linear regions were almost horizontal. 

Figure 3 presents the variation of the heat capacity jumps A q  at the 
glass-transition temperature of the various composites together with the 
variation of the coefficient A and the volume fractions for the mesophase 
and matrix vs. the volume fraction of the filler, as they have been derived 
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0 20 w) 60 80 

Uf 1 % )  + 
Fig. 3. The variation of the specific heat jumps at glass-transition temperatures of glass- 

epoxy composites vs. the fiber volume content uf The values for the factor )c Ca, and the 
interphase (u,) (0) and the matrix (u,) (+) volume fractions vs. uvp as derived from the values 
of the respective AC,’s (x) are also plotted. 

from the Lipatov law. The filler volume fractions uf were varied between 
uf = 0.10 UP to ~f = 0.70. 

EVALUATION OF THE ADHESION EXPONENTS q1 AND qz FOR 
THE THREETERM MODEL 

As soon as the Ar’s were determined and the values of r,’s are found, the 
values of the adhesion parameter A may be readily defined by using relation 
(24). This parameter defines the difference (ql - q2) of the exponents and 
therefore constitutes a characteristic value for the adhesion quality of me- 
sophase. 

In order to evaluate the ql and q2 exponents it is necessary to dispose a 
second equation, besides relation (281, for the evaluation of r, radius and 
relation (24) for the definition of the difference A = (ql - q2). For this 
purpose we used the values of the composite moduli in the direction of the 
fibers, taken for various fiber volume contents in the particular case of 
E-glass-epoxy composites, whereas the mesophase volume fractions u,  were 
determined from the experimental values of these quantities for certain 
values of u$, by applying the approximate multilayer model introduced in 
Ref. 4. These values fitted excellently a parabola, expressed by relation 
u,  = Cu?, with C = 0.123. The values for u,’s, together with the respective 
values for the moduli of the composites evaluated experimentally, were 
introduced in the adequate models, expressing the mechanical properties 
of the composites in terms of their constituents, and gave excellent coin- 
cidence with their experimental values based on the parabolic variation of 
u,  with u p  The values of the characteristic quantities for the three-term 
unfolding model, as derived from the above-described procedure, are con- 
tained in Table I. 
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In order to evaluate the exponent ql, we make recourse to the law of 
mixtures, given by relation (18), which expresses the longitudinal elastic 
modulus of the composite in terms of the moduli and the radii (or volume 
fractions) of the constituent phases. This relation for fiber composites may 
be written as 

The second right-hand term of relation - 
the mesophase, with volume fraction ui, to the E, modulus. 

If the integral in relation (30) is approximated by 

+ drY - r2] + Emum (30) 

(30) expresses the contribution of 

relation (30) becomes 

in which the quantity B is given by eq. (29) and the only unknown is the 
exponent ql, which can be readily calculated numerically. 

Figure 4 presents the variation of the adhesion parameter A vs. the filler 
volume content Vf of a series of E-glass-epoxy resin composites, whose me- 
chanical properties are given in Ref. 40 for values of the filler volume 
fraction varying between uf = 0 and uf = 0.70. 

0 20 40 60 80 
Uf (%I + 

Fig. 4. The mode of evolution of the variable terms E,irf/rPl and E,,,(rfjlr)9z, contributing 
to the definition of the interphase modulus, vs. the polar distance r from the fiber boundary 
for a 65% Eglass fiber-epoxy resin composite. 
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Equations (25) and (32) form a system of two equations and two unknowns, 
which can be solved and yields the values of the exponents q1 and q2 and 
their ratio a = q2/q1, which expresses the quality of adhesion and it is 
called the adhesion coefficient. The values of the exponents q1 and q2, as 
well as of their ratio a = q2/q1, were given in Table I. In Figure 4 the 
values of A = (ql - q2) vs. uf were plotted for the E-glass-fiber-epoxy 
composites studied. 

Figure 5 presents the variation of the terms Ef(r{r)ql and Em(r+r)q* in 
the mesophase layer for a 65% E-glass-fiber-reinforced epoxy resin, as they 
have been derived from eq. (32). It is worthwhile indicating the smooth 
transition of the EL modulus to the Em modulus at the region r N r,. Similar 
behaviors are presented in all other compositions. 

It is interesting plotting the variation of the Ei(r) modulus vs. polar 
distance around a typical fiber. Figure 6 presents this transition of the 
moduli from the fibers to the matrices, exemplifying the important role 
played by the mesophase layer to the overall mechanical behavior of the 
composite. 

Figure 7 presents the variation of the various moduli of the composite 
and its constituents for various volume fractions of the series of E-glass- 
epoxy fiber composites. It is interesting to point out the small variation of 
the average value of the variable Ei(r) modulus of the mesophase, which 
reflects the uniformity of the adhesion quality of these series of composites 
which is also indicated by the almost linear variation of the longitudinal 
composite modulus vs. the volume content. 

For the case of particulate composites relation (28) should be replaced 
by27 

from which the radius of the mesophase ri = (rf + Ar) can be determined. 

0 6 12 . 18 
ArxlO-’ ipm) - 

Fig. 5. The variation of the adhesion parameter A for the three-term unfolding model and 
the adhesion exponent 2q for the two-term mode vs. the filler volume fraction up 
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- 60 

0 20 40 60 80 

Vf 1%) + 
Fig. 6. The variation of the longitudinal and transverse moduli for the composite (ECL, Em) 

vs. the filler-volume fraction ur and the mode of variation of the average mesophase modulus, 
Ep, as derived from the models. 

Furthermore, since for the particulates the simple law of mixtures, ex- 
pressed by relation (l), does not hold and instead relation (8) interconnects 
the compliance 0, of the composite with the compliances and Poisson’s ratios 
of the phases, it is not possible to directly use relation (30). In this case, it 
is necessary to define the average value of Op from relation (8) and, then, 
to introduce its inverse @ in relation (31), yielding the contribution of the 
mesophase. 

For the rest, the calculation of the characteristic parameters of the me- 
sophase for particulates follows the same procedure for fiber-reinforced 
composites. 

I 

6 12 18 24 
Ar x10* (vm) + 

Fig. 7. The variation of the interphase moduli vs. polar distance r for different fiber-volume 
contents ur for the three-term unfolding model. 
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EVALUATION OF THE ADHESION EXPONENT 217 FOR THE 

For the case of the two-term unfolding model we have to replace the 
second right-hand term in relation (18) by introducing, instead of integral 
11, the new integral Iz,  derived from relation (26), and expressed by 

TWO-TERM UNFOLDING MODEL 

This integral, after some algebra, yields 

GUf (1 - I+-') - uf(Em - EfBq) (1 + B-S - 2B-1) 
3 

I2 = ___ 
(7) - 1) 

Introducing this integral into relation (301, we obtain 

(E, - Em) - ( E f -  Em/3)Uf 

In this relation the only unknown is the exponent 217, which may be 
calculated by introducing the appropriate values for all known quantities 
corresponding to each filler volume content. 

The values of the exponent 271 are included in Table I and they are also 
plotted in Figure 4. A comparison between the corresponding adhesion 
parameters A and 217 for the two versions of the unfolding model shows 
the equivalence of the two cases. 

Figure 8 presents the variation of the mesophase moduli E,(r) for the 
various fiber volume fractions vs. the extent of the mesophase Ar, nor- 
malized to the highest fiber volume fraction of 70%. This was done in order 
to show the similarity of variation of the El modulus for the various values 
of v f  for this series of composites, possessing the same adhesion properties 
between them. These normalized patterns are equivalent with those pre- 
sented in Figure 6 for the three-term unfolding model, since the differences 
between corresponding values of the two versions of the model are insig- 
nifican t . 

The values of the radii r, of the mesophase for this series of fiber com- 
posites varied between 3 x m (300 A) and 24 x lo-@ m (2400 A) for 
the various filler volume contents up The values of mesophase cited in the 
bibliography are varying between 100 and 300 A. The higher values derived 
for the unfolding models may be justified as follows: 

(i) The extent of mesophase derived by these models incorporates all 
perturbation phenomena, appearing and influencing the mesophase. These 
are due not only to the physical and chemical reactions taking place at the 
mesophase, but also to mechanical reactions because of shrinkage phenom- 
ena, stress concentrations at corners, and discontinuities of the phases and 
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0 6 12 18 24 
Arx10’ ( p m )  + 

Fig. 8. The variation of the mesophase moduli, normalized to the mesophase thickness Ar 
for the 70% composite vs. polar distance r for the two-term unfolding model: (.) 0.70; (+) 0.60; 
(A) 0.50; (0) 0.40; (A) 0.20; (‘1 0.10. 

stress singularities. They include also any interactions between neighboring 
fillers, since all these factors are contributing to the variation of the heat 
capacity jumps. 

(ii) The mesophase was calculated at the glass transition temperatures 
of the matrix and the composite, where all the above phenomena are ac- 
centuated, thus leading to a maximum value for the thickness of the me- 
sophase layer. 

CONCLUSIONS 

The multilayered model, introduced in previous publications by the au- 
thor, has been shown to present a basic inconsistency, as it appeared in 
previous references.lJ This was its incompatibility with the assumption 
made for the model that the boundary layer, constituting the mesophase 
between fillers and matrix, should extent to a thickness well defined by 
thermodynamic measurements, yielding jumps in the heat capacity values 
at the glass-transition temperature region of the composites. By leaving 
this layer in the first models to extend freely and tend, in an asymptotic 
manner, to its limiting value of Em, we allowed an extension of the meso- 
phase layer several times larger than the layer anticipated from thermo- 
dynamic measurements, which does not happen in the new versions. 

In the new versions of the model this inconsistency was alleviated by 
imposing at the mesophase-matrix boundary the agreement between Ei(ri) 
and Em. The new versions of the model gave reasonable thicknesses for the 
mesophase layer in its proper sense. The first version of the model, on the 
contrary, gave the region influenced by the perturbation of the mesophase 
layer, which may be extended far beyond the real mesophase layer. How- 
ever, the mode of variation of the mesophase modulus in the layer indicated 
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the role of transition, played by this layer in adapting and smoothing out 
the large differences in the mechanical properties of phases. 

The values of the radii ri for the mesophase defined by the model may 
be judged as reasonable, extending to 2000 8, for the highest filler volume 
content, if one takes into account the fact that this layer was calculated at 
the critical zone of the glass transition of the composite, where a resonance 
of disparities between phases should occur; furthermore, this layer embraces 
all the factors contributing to its existence and not only just the physi- 
sorption and chemisorption phenomena of macromolecules at this zone as 
is the case of evaluation of such layers in other cases.27 

A perfect cooperation between phases is the ideal for an optimum behavior 
of the composite. A good indication of this cooperation is given either by 
the adhesion parameter A, as defined by the first version of the unfolding 
model, or by the exponent 271 defined by its second version. 

Between the two versions of the model the two-term version is preferable, 
since it depends on a much more stable procedure for evaluating the adhe- 
sion coefficient 271 and is easier to handle. 

Both models could readily be extended to describe the mesophase phe- 
nomena in particulates and impregnated composites. 
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